78 research outputs found

    Tangled Circuits

    Full text link
    The theme of the paper is the use of commutative Frobenius algebras in braided strict monoidal categories in the study of varieties of circuits and communicating systems which occur in Computer Science, including circuits in which the wires are tangled. We indicate also some possible novel geometric interest in such algebras

    Calculating Colimits Compositionally

    Get PDF
    We show how finite limits and colimits can be calculated compositionally using the algebras of spans and cospans, and give as an application a proof of the Kleene Theorem on regular languages

    Calculating Colimits Compositionally

    Get PDF
    We show how finite limits and colimits can be calculated compositionally using the algebras of spans and cospans, and give as an application a proof of the Kleene Theorem on regular languages

    Interacting Frobenius Algebras are Hopf

    Full text link
    Theories featuring the interaction between a Frobenius algebra and a Hopf algebra have recently appeared in several areas in computer science: concurrent programming, control theory, and quantum computing, among others. Bonchi, Sobocinski, and Zanasi (2014) have shown that, given a suitable distributive law, a pair of Hopf algebras forms two Frobenius algebras. Here we take the opposite approach, and show that interacting Frobenius algebras form Hopf algebras. We generalise (BSZ 2014) by including non-trivial dynamics of the underlying object---the so-called phase group---and investigate the effects of finite dimensionality of the underlying model. We recover the system of Bonchi et al as a subtheory in the prime power dimensional case, but the more general theory does not arise from a distributive law.Comment: 32 pages; submitte

    Rewriting modulo symmetric monoidal structure

    No full text
    String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory.An important role in many such approaches is played by equational theories of diagrams, typically oriented and applied as rewrite rules. This paper lays a comprehensive foundation for this form of rewriting. We interpret diagrams combinatorially as typed hypergraphs and establish the precise correspondence between diagram rewriting modulo the laws of SMCs on the one hand and double pushout (DPO) rewriting of hypergraphs, subject to a soundness condition called convexity, on the other. This result rests on a more general characterisation theorem in which we show that typed hypergraph DPO rewriting amounts to diagram rewriting modulo the laws of SMCs with a chosen special Frobenius structure.We illustrate our approach with a proof of termination for the theory of non-commutative bimonoids

    Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study

    Get PDF
    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental and computational data support a reaction mechanism in which cis,syndio-selectivity is a result of stereogenic metal control, while microstructural errors are predominantly due to alkylidene isomerization via rotation about the Ru═C double bond

    Constructive complete distributivity II

    No full text
    corecore